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(57) ABSTRACT

Disclosed herein is a framework for facilitating automatic
planning for medical imaging. In accordance with one
aspect, the framework receives first image data of a subject.
One or more imaging parameters may then be derived using
a geometric model and at least one reference anatomical
primitive detected in the first image data. The geometric
model defines a geometric relationship between the detected
reference anatomical primitive and the one or more imaging
parameters. The one or more imaging parameters may be
presented, via a user interface, for use in acquisition, recon-
struction or processing of second image data of the subject.
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1
AUTOMATIC PLANNING FOR MEDICAL
IMAGING

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of U.S. provisional
application No. 61/863,934 filed on Aug. 9, 2013, the entire
contents of which are incorporated herein by reference.

TECHNICAL FIELD

The present disclosure generally relates to diagnostic
imaging and, more specifically, to automated or semi-auto-
mated systems and methods for facilitating automatic plan-
ning for medical imaging.

BACKGROUND

The field of medical imaging has seen significant
advances since the time X-Rays were first used to determine
anatomical abnormalities. Medical imaging hardware has
progressed from modern machines such as Medical Reso-
nance (MR) imaging scanners, Computed Tomographic
(CT) scanners and Positron Emission Tomographic (PET)
scanners, to multimodality imaging systems such as PET-CT
and PET-MRI systems. Because of large amount of image
data generated by such modern medical scanners, there has
been and remains a need for developing image processing
techniques that can automate some or all of the processes to
determine the presence of anatomical abnormalities in
scanned medical images.

Digital medical images are constructed using raw image
data obtained from a scanner, for example, a CAT scanner,
MRI, etc. Digital medical images are typically either a
two-dimensional (“2D”) image made of pixel elements, a
three-dimensional (“3D”) image made of volume elements
(“voxels”) or a four-dimensional (“4D”) image made of
dynamic elements (“doxels”). Such 2D, 3D or 4D images
are processed using medical image recognition techniques to
determine the presence of anatomical abnormalities such as
cysts, tumors, polyps, etc. Given the amount of image data
generated by any given image scan, it is preferable that an
automatic technique should point out anatomical features in
the selected regions of an image to a doctor for further
diagnosis of any disease or condition.

Recognizing anatomical structures within digitized medi-
cal images presents multiple challenges. For example, a first
concern relates to the accuracy of recognition of anatomical
structures within an image. A second area of concern is the
speed of recognition. Because medical images are an aid for
a doctor to diagnose a disease or condition, the speed with
which an image can be processed and structures within that
image recognized can be of the utmost importance to the
doctor in order to reach an early diagnosis. Hence, there is
a need for improving recognition techniques that provide
accurate and fast recognition of anatomical structures and
possible abnormalities in medical images.

Automatic image processing and recognition of structures
within a medical image is generally referred to as Computer-
Aided Detection (CAD). A CAD system can process medi-
cal images and identify anatomical structures including
possible abnormalities for further review. Such possible
abnormalities are often called candidates and are considered
to be generated by the CAD system based upon the medical
images.
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Head and neck vessel imaging using MR provides valu-
able information for the diagnosis of stenosis, dissection,
aneurysms and vascular tumors. In order to achieve suitable
imaging qualities in contrast enhanced or non-contrast
enhanced magnetic resonance angiography (MRA), high-
resolution MR slices should be positioned at a specific
location and orientation with respect to specific arterial or
venous vessels. For example, both carotid arteries, including
aortic arch and circle of Willis, should be covered by
high-resolution coronal slices. Further, additional scout
slices may be acquired to facilitate positioning of so-called
Combined Applications to Reduce Exposure (CARE) bolus
or test-bolus slices. The last two help to reliably meet the
optimal time point of the contrast-agent bolus arrival in the
region of interest (ROI).

Proper slice positioning is time consuming, and the num-
ber of slices is directly related to the acquisition time and
temporal or spatial resolution of dynamic angiographies.
Additionally, the slice orientation can also influence the
presence of artifacts in the resulting images (e.g., wrap-
around if field-of-view is too small). Multiple repetitions to
obtain proper positioning and imaging results need to be
avoided, particularly in time-critical or emergency exami-
nations (e.g., in stroke MR examinations) and due to the fact
that contrast agent administration cannot be repeated during
the same MR examination. Thus, slice positioning needs to
cover the relevant anatomical structures with the least num-
ber of slices and to achieve optimal imaging results. How-
ever, in current workflows, slice positioning is often a
bottleneck in increasing the speed of workflow and reliabil-
ity across operators.

SUMMARY

The present disclosure relates to a framework for facili-
tating automatic planning for medical imaging. In accor-
dance with one aspect, the framework receives first image
data of a subject. One or more imaging parameters may then
be derived using a geometric model and at least one refer-
ence anatomical primitive detected in the first image data.
The geometric model defines a geometric relationship
between the detected reference anatomical primitive and the
one or more imaging parameters. The one or more imaging
parameters may be presented, via a user interface, for use in
acquisition, reconstruction or processing of second image
data of the subject.

This summary is provided to introduce a selection of
concepts in a simplified form that are further described
below in the following detailed description. It is not intended
to identify features or essential features of the claimed
subject matter, nor is it intended that it be used to limit the
scope of the claimed subject matter. Furthermore, the
claimed subject matter is not limited to implementations that
solve any or all disadvantages noted in any part of this
disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete appreciation of the present disclosure
and many of the attendant aspects thereof will be readily
obtained as the same becomes better understood by refer-
ence to the following detailed description when considered
in connection with the accompanying drawings. Further-
more, it should be noted that the same numbers are used
throughout the drawings to reference like elements and
features.



US 9,471,987 B2

3

FIG. 1 is a block diagram illustrating an exemplary
imaging system;

FIG. 2 shows an exemplary method of training hierarchi-
cal detectors;

FIG. 3 shows an exemplary method of medical imaging
planning;

FIG. 4 illustrates an exemplary application for automatic
scan positioning of CARE bolus slice group;

FIG. 5 illustrates an exemplary application for automatic
scan positioning of a contrast-enhanced (CE)-MRA volume;

FIG. 6 illustrates an exemplary application for automatic
scan positioning of a time-of-flight (TOF) angiography
acquisition volume; and

FIG. 7 illustrates an exemplary application for recon-
structing 2D vessel scout-Thin Maximum Intensity Projec-
tion (MIP) images from a T1-weighted 3D scout image.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth such as examples of specific components, devices,
methods, etc., in order to provide a thorough understanding
of embodiments of the present invention. It will be apparent,
however, to one skilled in the art that these specific details
need not be employed to practice embodiments of the
present invention. In other instances, well-known materials
or methods have not been described in detail in order to
avoid unnecessarily obscuring embodiments of the present
invention. While the invention is susceptible to various
modifications and alternative forms, specific embodiments
thereof are shown by way of example in the drawings and
will herein be described in detail. It should be understood,
however, that there is no intent to limit the invention to the
particular forms disclosed, but on the contrary, the invention
is to cover all modifications, equivalents, and alternatives
falling within the spirit and scope of the invention.

The term “x-ray image” as used herein may mean a visible
x-ray image (e.g., displayed on a video screen) or a digital
representation of an x-ray image (e.g., a file corresponding
to the pixel output of an x-ray detector). The term “in-
treatment x-ray image” as used herein may refer to images
captured at any point in time during a treatment delivery
phase of a radiosurgery or radiotherapy procedure, which
may include times when the radiation source is either on or
off. From time to time, for convenience of description, MRI
imaging data may be used herein as an exemplary imaging
modality. It will be appreciated, however, that data from any
type of imaging modality including, but not limited to,
X-Ray radiographs, CT, PET (positron emission tomogra-
phy), PET-CT, SPECT, SPECT-CT, MR-PET, 3D ultrasound
images or the like may also be used in various embodiments
of the invention.

Unless stated otherwise as apparent from the following
discussion, it will be appreciated that terms such as “seg-

menting,” “‘generating,” “registering,” “determining,”
“aligning,” “positioning,” “processing,” “computing,”
“selecting,” “estimating,” “detecting,” “tracking” or the like

may refer to the actions and processes of a computer system,
or similar electronic computing device, that manipulates and
transforms data represented as physical (e.g., electronic)
quantities within the computer system’s registers and memo-
ries into other data similarly represented as physical quan-
tities within the computer system’s memories or registers or
other such information storage, transmission or display
devices. Embodiments of the methods described herein may
be implemented using computer software. If written in a
programming language conforming to a recognized stan-
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dard, sequences of instructions designed to implement the
methods can be compiled for execution on a variety of
hardware platforms and for interface to a variety of operat-
ing systems. In addition, embodiments of the present inven-
tion are not described with reference to any particular
programming language. It will be appreciated that a variety
of programming languages may be used to implement
embodiments of the present invention.

As used herein, the term “image” refers to multi-dimen-
sional data composed of discrete image elements (e.g.,
pixels for 2D images, voxels for 3D images, doxels for 4D
images, etc.). The image may be, for example, a medical
image of a subject collected by computed tomography,
magnetic resonance imaging, ultrasound, or any other medi-
cal imaging system known to one of skill in the art. The
image may also be provided from non-medical contexts,
such as, for example, remote sensing systems, electron
microscopy, etc. The methods of the inventions can be
applied to images of any dimension, e.g., a 2D picture, 3D
or 4D volume. For a 2- or 3-dimensional image, the domain
of the image is typically a 2- or 3-dimensional rectangular
array, wherein each pixel or voxel can be addressed with
reference to a set of two or three mutually orthogonal axes.
The terms “digital” and “digitized” as used herein will refer
to images or volumes, as appropriate, in a digital or digitized
format acquired via a digital acquisition system or via
conversion from an analog image.

A framework for automatic planning of medical imaging
is described herein. In accordance with one aspect, the
framework automatically detects reference anatomical
primitives in scout image data of a subject (e.g., patient)
using hierarchical detectors. Detected reference anatomical
primitives (e.g., structures, surfaces, lines, curves, land-
marks, etc.) may be used to automatically derive and pre-
scribe one or more imaging parameters for subsequent
medical image acquisition, reconstruction or processing.
Exemplary imaging parameters include positions and orien-
tations of individual test bolus slices, CARE bolus slices,
further scout slices or high-resolution angiography slices,
timing of image acquisition based on estimated blood flow
between two automatically-detected anatomical volumes of
interest, and so forth. In addition, multi-planar reconstruc-
tion (MPR) scout images may also be derived from the
detected reference anatomical primitives.

The automatic or semi-automatic planning of imaging
parameters provided by the present framework is useful in,
for example, head-neck vessel imaging workflows (e.g., MR
stroke workflows). It should be appreciated that this frame-
work can also be extended to other workflows related to
localization and identification of blood vessels (e.g., coro-
nary plaque detection), other angiography or dynamic work-
flows. The data-driven detection results provided by the
present framework are advantageously adaptive to the par-
ticular anatomy of the subject or patient. Further, the frame-
work is advantageously faster, more precise, robust, user-
friendly, more reproducible and standardized than previous
work. These exemplary advantages and features will be
described in further details in the following description.

FIG. 1 is a block diagram illustrating an exemplary
imaging system 100. The imaging system 100 includes a
computer system 101 for implementing the framework as
described herein. The computer system 101 may further be
connected to an imaging device 102 and a workstation 103,
over a wired or wireless network. The imaging device 102
may be a radiology scanner such as a magnetic resonance
(MR) scanner, PET/MR, X-ray or a CT scanner.
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Computer system 101 may be a desktop personal com-
puter, a portable laptop computer, another portable device, a
mini-computer, a mainframe computer, a server, a storage
system, a dedicated digital appliance, or another device
having a storage sub-system configured to store a collection
of digital data items. In one implementation, computer
system 101 comprises a processor or central processing unit
(CPU) 104 coupled to one or more non-transitory computer-
readable media 105 (e.g., computer storage or memory),
output devices 108 (e.g., monitor, display, printer, etc.) and
various input devices 110 (e.g., mouse, keyboard, touch pad,
voice recognition module, etc.) via an input-output interface
121. Computer system 101 may further include support
circuits such as a cache, a power supply, clock circuits and
a communications bus. Even further, computer system 101
may be provided with a graphics controller chip, such as a
graphics processing unit (GPU) that supports high perfor-
mance graphics functions.

It is to be understood that the present technology may be
implemented in various forms of hardware, software, firm-
ware, special purpose processors, or a combination thereof.
In one implementation, the techniques described herein are
implemented by learning unit 106 and planning unit 107.
Learning unit 106 and planning unit 107 may include
computer-readable program code tangibly embodied in non-
transitory computer-readable media 105. Non-transitory
computer-readable media 105 may include random access
memory (RAM), read only memory (ROM), magnetic
floppy disk, flash memory, and other types of memories, or
a combination thereof. The computer-readable program
code is executed by CPU 104 to control and/or process
image data from imaging device 102.

As such, the computer system 101 is a general-purpose
computer system that becomes a specific-purpose computer
system when executing the computer readable program
code. The computer-readable program code is not intended
to be limited to any particular programming language and
implementation thereof. It will be appreciated that a variety
of programming languages and coding thereof may be used
to implement the teachings of the disclosure contained
herein. Computer system 101 may also include an operating
system and microinstruction code. The various techniques
described herein may be implemented either as part of the
microinstruction code or as part of an application program or
software product, or a combination thereof, which is
executed via the operating system. Various other peripheral
devices, such as additional data storage devices and printing
devices, may be connected to the computer system 101.

The workstation 103 may include a computer and appro-
priate peripherals, such as a keyboard and display, and can
be operated in conjunction with the entire system 100. For
example, the workstation 103 may communicate with the
imaging device 102 so that the image data acquired by, for
instance, imaging device 102 can be rendered at the work-
station 103 and viewed on the display. The workstation 103
may include a user interface 130 that allows a radiologist or
any other skilled user (e.g., physician, technician, operator,
scientist, etc.) to manipulate and view the image data.
Further, the workstation 103 may communicate directly with
computer system 101 to present acquired, reconstructed
and/or processed image data. For example, a radiologist can
interactively manipulate the displayed representation of the
processed image data and view it from various viewpoints
and in various reading modes.

FIG. 2 shows an exemplary method 200 of training
hierarchical detectors. In some implementations, the method
200 is performed offline (e.g., pre-operatively, before a
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surgical intervention or procedure is performed on a subject
or patient). It should be noted that the steps of the method
200 may be performed in the order shown or a different
order. Furthermore, different, additional or fewer steps may
be implemented. Even further, the method 200 may be
implemented with the system 100 of FIG. 1, a different
system, or a combination thereof.

At 202, learning unit 106 receives training image data.
The training image data may be acquired from one subject
(e.g., a patient) or multiple subjects. The training image data
may be acquired based on non-contrast-enhanced magnetic
resonance imaging. Alternatively, the training image data
may be acquired based on contrast-enhanced magnetic reso-
nance images and/or non-contrast enhanced angiography
(MRA) data of blood vessels (e.g., Time of Flight (TOF) or
otherwise labeled flowing spins). Other types of training
image data are also useful. Exemplary blood vessels include,
but are not limited to, intra- and/or extra-cranial vessels
(e.g., carotids, aortic arch, etc.). Other types of imaging
modalities or structures of interest are also useful.

In exemplary steps 204, 206, 208 and 210, learning unit
106 learns hierarchical detectors of reference anatomical
primitives and their associated anatomical context (e.g.,
spatial relations). In some implementations, the hierarchical
detectors are learned independently. Alternatively, one or
more hierarchical detectors may be learned based on other
hierarchical detectors. After learning, the hierarchical detec-
tors may be invoked in a hierarchical manner during run-
time, as will be discussed with reference to FIG. 3.

Reference anatomical primitives may be used to derive
imaging parameters for subsequent image acquisition,
reconstruction or processing. Some reference anatomical
primitives are visible within the training image data, while
other reference anatomical primitives may not be easily
distinguishable or visible within the image data and may be
located based on other reference anatomical primitives. For
example, the location of the aortic arch may be predicted
based on the location of the TS vertebra. Exemplary types of
reference anatomical primitives include, but are not limited
to, landmarks, lines, curves, surfaces, structures, and so
forth. For purposes of illustration, the reference anatomical
primitives described in steps 204-210 include bone struc-
tures, vessel landmarks and structures. However, it should
be appreciated that detectors of other reference anatomical
primitives may also be trained.

Turning to step 204 in more detail, learning unit 106 may
learn at least one bone detector based on the training image
data. Since bone structures are more distinctive and typically
quite consistent in relation to vessels or other soft tissue,
they provide a coarse but robust estimation of the locations
of vessel structures. Exemplary bone structures include, for
example, foramen magnum, C5 vertebra, T5 vertebra, etc.
Other types of bone structures also possible. The detectors
may be learned using appearance models, active shape
models, or any other suitable machine learning technique.

At 206, learning unit 106 learns at least one spatial
relationship model based on the training image data. The
spatial relationship model captures the geometric relation-
ship between at least one reference anatomical primitive
(e.g., bone structure) and another reference anatomical
primitive (e.g., vessel structure or landmark). The spatial
relationship model may include, for example, a linear
regression model, active shape model, etc.

At 208, learning unit 106 learns at least one vessel
landmark detector based on the training image data. A
landmark (or semantic point) may be any easily distinguish-
able or anatomically meaningful point in the image data. For
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example, in the context of blood vessels, the most distinctive
landmarks may include, but are not limited to, bifurcations
of vessels (e.g., basilaris artery bifurcation to vertebral
arteries), junction points of vessels, aortic arch center, center
circle of Willis, and so forth. The detectors may be learned
using appearance models, active shape models, or any other
suitable machine learning technique.

At 210, learning unit 106 learns at least one vessel
structure detector based on the training image data. Exem-
plary vessel structures may include, but are not limited to,
the common carotid artery, ascending aorta, descending
aorta, basilaris artery, middle cerebral artery, typical ana-
tomical normal-variants, patterns and/or pathologies thereof,
and so forth. The detectors may be learned using appearance
models, active shape models, or any other suitable machine
learning technique.

At 212, learning unit 106 generates a geometric model to
derive one or more imaging parameters based on reference
anatomical primitives detected by the learned hierarchical
detectors. The geometric model defines the geometric rela-
tionships between detected reference anatomical primitives
and one or more imaging parameters (e.g., geometric rela-
tionship between detected vessel and MR slice position).
Exemplary geometric relationships include, but are not
limited to, relative angle relationships, dimensions, symme-
tries, positions, and so forth. Such geometric model may be
configurable or adjustable by the system administrator.

FIG. 3 shows an exemplary method 300 of medical
imaging planning. In some implementations, the method
300 is performed online (e.g., intra-operatively while a
surgical intervention or procedure is performed on a subject
or patient). It should be noted that the steps of the method
300 may be performed in the order shown or a different
order. Furthermore, different, additional or fewer steps may
be implemented. Even further, the method 300 may be
implemented with the system 100 of FIG. 1, a different
system, or a combination thereof.

At 302, planning unit 107 receives scout image data of a
subject (e.g., patient) and one or more learned hierarchical
detectors. Scout image data is generally low resolution
preliminary images acquired prior to performing the major
portion of a particular study. The scout image data may be
acquired by, for example, imaging device 102. The scout
image data of the subject may be acquired at least in part by
the same modality (e.g., MR) as the training image data used
to learn hierarchical detectors, as previously described with
reference to FIG. 2.

The one or more hierarchical detectors may be learned
using, for example, method 200 as previously described with
reference to FIG. 2. At steps 304, 306, 308 and 310, the
planning unit 107 invokes the learned hierarchical detectors
to detect various reference anatomical primitives in the scout
image data. The hierarchical detectors may be invoked in a
hierarchical sequence. The hierarchical sequence may be
determined based on, for example, detection reliability,
spatial relations between the different reference anatomical
primitives, and so forth. For example, more distinctive
reference anatomical primitives with the highest detection
reliability may be detected first. The locations of such
detected reference anatomical primitives may be used to
predict the locations of other spatially correlated reference
anatomical primitives. For purposes of illustration, the hier-
archical detectors described in steps 304, 306, 308 and 310
include a bone structure detector, a spatial relationship
model, a vessel landmark detector and a vessel structure
detector. However, it should be appreciated that other detec-
tors may also be used, depending on the specific application.
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Turning to step 304 in more detail, planning unit 107
detects bone landmarks or structures in the scout image data
using a learned bone detector. At 306, planning unit 107
predicts positions of major vessel landmarks in the scout
image data by applying a learned spatial relationship model
that captures the geometric relation between the detected
bone structure and the major vessel landmark. At 308,
planning unit 107 detects one or more distinctive vessel
landmarks or structures in the local neighborhood of pre-
dicted positions in the scout image data using a learned
vessel landmark detector. At 310, planning unit 107 detects
and/or derives landmarks and/or centerlines of vessel struc-
tures in the scout image data based on detected distinctive
vessel landmarks and/or vessel structures (e.g., small vessel
structures and their normal-variants). The other vessel struc-
tures may be detected using a learned vessel structure
detector. At 314, planning unit 107 derives one or more
imaging parameters based on a geometric model and
detected reference anatomical primitives. The one or more
imaging parameters may include patient-specific image
acquisition volumes and their corresponding orientations,
such as a 3D or 4D contrast-enhanced magnetic resonance
angiography volume for visualizing contrast enhancement,
time-of-flight angiography acquisition volume, and so forth.
The volumes may be prescribed based on the detected
anatomical primitives and according to typical normal vari-
ants, typical pathologies and pre-set imaging parameters
(e.g., field of view, phase encoding direction, effective
thickness, acquisition time, etc.). Other types of imaging
parameters may include, but are not limited to, positioning
of a bolus tracking slice or window, reconstruction planes or
volumes for reconstructing images from the scout image
data, and so forth.

The geometric model defines the geometric relationship
between the detected reference anatomical primitives and
the one or more imaging parameters. In the context of an
automatic bolus tracking slice positioning application, for
instance, the one or more imaging parameters may include
the locations and orientation of high-resolution slice groups
to be acquired, the timing of slice group image acquisition
upon bolus arrival, etc. The timing of image acquisition may
be determined based on the estimated blood flow in a blood
vessel (e.g., carotid artery) between two automatically
detected volumes of interest. Other types of imaging param-
eters may also be determined, depending on the particular
application, as will be described in further detail later. The
planning unit 107 may further generate performance data
associated with such imaging parameters. Performance data
may include, for example, sensitivity and specificity of the
suggested slice positions.

At 316, planning unit 107 presents the one or more
imaging parameters for use in acquisition, reconstruction or
processing of medical image data of the subject. The medi-
cal image data may include, for example, MR image data of
the subject’s head or neck. The one or more imaging
parameters may be presented via, for instance, a user inter-
face at workstation 103. The user interface may support
different types of workflows, such as an MR angiography
workflow, a stroke MR imaging workflow, or other dynamic
workflows. Textual and/or graphical user guidance may be
generated, based on the one or more imaging parameters, to
facilitate a workflow for medical image acquisition, recon-
struction or processing. The guidance advantageously
allows even inexperienced users to perform steps of the
imaging workflow. For example, in a test bolus workflow,
the user interface may provide guidance on when and where
to inject the test bolus or contrast agent, where to position
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the slice image to be acquired, when and how to trigger the
slice image acquisition, and so forth. Further, the user
interface may also provide online tracking of the bolus as it
travels along the blood vessel (e.g., carotid) and arrives at
the target region of interest. Additionally, the user interface
may enable the user to configure the parameters of the
imaging protocols (e.g., CARE bolus protocol, MR angiog-
raphy 3D/4D protocol, test bolus protocol, etc.).

FIG. 4 illustrates an exemplary application for automatic
scan positioning of CARE bolus slice group. CARE bolus is
an exemplary bolus-tracking program that allows the user to
trigger the scan as soon as the bolus arrives in the region of
interest. MR scout images 402, 404, 406, 410 and 418 show
various sagittal views of the subject’s head, neck and chest
regions at different stages of hierarchical detection. The
hierarchical detection is performed to detect the locations of
reference anatomical primitives, which are then used to
automatically derive the scan positioning of CARE bolus
high-resolution slice group for acquisition.

As indicated in scout image 402, planning unit 107 first
detects the TS vertebra 403 using the learned bone detector.
The T5 vertebra 403 has a strong spatial correlation with the
aortic arch in terms of its feet-to-head (FH) position. As
shown in scout image 404, planning unit 107 may predict the
position of the aortic arch landmark 405 using a learned
spatial relationship model that captures the geometric rela-
tionship between the aortic arch landmark 405 and the TS
vertebra 403. In scout image 406, planning unit 107 has
detected the centerline of the aorta 412 in the neighborhood
408 of predicted position of the aortic arch landmark 405
using a learned vessel landmark detector. By using the aorta
centerline 412, the planning unit 107 is able to derive the
secondary structures—ascending aorta 414 and descending
aorta 416 (as shown in image 410), which would otherwise
be difficult to detect based on image contrast alone.

Scout image 418 shows the CARE bolus slice group scan
region (dashed box 420) and bolus tracking window (solid
box 422) generated by planning unit 107 based on the
geometric model and detected reference anatomical primi-
tives. The geometric model may define the centerline of the
bolus slice group 420 along the midline between the ascend-
ing and descending aortas 414 and 416. The position of the
bolus tracking window 422 may be defined along the
ascending aorta 414. Image 424 shows the axial view of the
bolus slice group scan region 420.

FIG. 5 illustrates an exemplary application for automatic
scan positioning of contrast-enhanced (CE)-MRA volume.
According to a CE-MRA carotids protocol, the CE-MRA
acquisition volume covers the aortic arch and circle of
Willis. The CE-MRA acquisition volume may be automati-
cally positioned based on bone structure landmarks and
dedicated vessel landmarks. More particularly, planning unit
107 may invoke a learned bone detector to detect the C6
vertebra, as indicated by landmarks 506 in the axial scout
image 502. Image 504 shows a magnified view of the C6
vertebra region. Planning unit 107 then predicts, using a
learned spatial relationship model, the positions of the major
vessel landmark 510 and 511 associated with the circle of
Willis and the aortic arch respectively. Planning unit 107
may then derive the CE-MRA acquisition volume 514 based
on the detected bone structure and predicted vessel landmark
positions, as shown in the sagittal views 508 and 516. More
particularly, the CE-MRA acquisition volume 514 may be
derived by defining its centerline (and orientation) 512 in a
1% approximation using the detected C6 vertebra landmarks
506. The position and range of the CE-MRA acquisition
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10
volume may be derived using the predicted locations of the
vessel landmarks (510 and 511).

FIG. 6 illustrates an exemplary application for automatic
scan positioning of a time-of-flight (TOF) angiography
acquisition volume. TOF is an MRI technique to visualize
flow within blood vessels, without the need to administer
exogenous contrast agents. As shown by scout image 602,
planning unit 107 may derive the centerline 604 and the
orientation of the TOF acquisition volume 608 based on
bone landmarks (e.g., occipital bone 606) and vessel land-
marks (e.g., anterior cerebral artery, middle cerebral artery,
basilaris artery, etc.) detected using hierarchical detectors.

FIG. 7 illustrates an exemplary application for recon-
structing a 2D vessel scout-Thin Maximum Intensity Pro-
jection (MIP) image from a T1-weighted 3D scout image.
MIP is a volume rendering method for 3D data that projects
in the visualization plane the voxels with maximum intensity
that fall in the way of parallel rays traced from the viewpoint
to the reconstruction plane. Planning unit 107 may first
automatically detect the bone structure landmarks 704 and
703 associated with the C3 vertebra and Sella (as shown in
lateral scout image 702), followed by right and left carotid
landmarks 707 and 708 in the vicinity of the bone structure
landmarks 703 and 704 (as shown in axial scout image 706).
The orientation, centerline and/or range of the ThinMIP
reconstruction planes (e.g., 50 mm thickness) may then be
derived based on the detected right and left carotid land-
marks 707 and 708. The anterior-posterior (AP) and lateral
2D projection images 720 and 722 may then be recon-
structed from a 3D scout image (702 and 706) using the
derived reconstruction planes.

While the present invention has been described in detail
with reference to exemplary embodiments, those skilled in
the art will appreciate that various modifications and sub-
stitutions can be made thereto without departing from the
spirit and scope of the invention as set forth in the appended
claims. For example, elements and/or features of different
exemplary embodiments may be combined with each other
and/or substituted for each other within the scope of this
disclosure and appended claims.

The invention claimed is:

1. A non-transitory computer-readable medium embody-
ing a program of instructions executable by machine to
perform steps for medical imaging planning, the steps com-
prising:

(1) learning hierarchical detectors based on training image

data;

(i) detecting reference anatomical primitives in first
image data of a subject by applying the learned hier-
archical detectors;

(iii) deriving one or more imaging parameters based on a
geometric model, wherein the geometric model defines
a geometric relationship between at least one of the
detected reference anatomical primitives and the one or
more imaging parameters; and

(iv) presenting, via a user interface, the one or more
imaging parameters for use in acquisition, reconstruc-
tion or processing of second image data of the subject.

2. The non-transitory computer-readable medium of claim
1, wherein the program of instructions is further executable
by the machine to learn the hierarchical detectors by

learning a bone detector, and

learning a spatial relationship model that captures a
geometric relationship between a bone structure and a
vessel structure or landmark.

3. A computer-implemented method of medical imaging

planning, comprising:
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(1) receiving first image data of a subject;

(ii) detecting at least one reference anatomical primitive
by invoking learned hierarchical detectors to detect at
least one distinctive landmark, curve, surface, structure
or a combination thereof

(iii) automatically deriving, by a processor, one or more
imaging parameters by using a geometric model and
the at least one reference anatomical primitive detected
in the first image data, wherein the geometric model
defines a geometric relationship between the detected
reference anatomical primitive and the one or more
imaging parameters; and

(iv) presenting, via a user interface, the one or more
imaging parameters for use in acquisition, reconstruc-
tion or processing of second image data of the subject.

4. The method of claim 3 wherein detecting the reference
anatomical primitive comprises invoking the hierarchical
detectors in a hierarchical sequence based on detection
reliability, spatial relations between different reference ana-
tomical primitives, or a combination thereof.

5. The method of claim 3 wherein detecting the reference
anatomical primitive in the first image data comprises
detecting at least one bone structure in the first image data
by invoking a learned bone detector.

6. The method of claim 5 wherein detecting the reference
anatomical primitive in the first image data further com-
prises detecting a first vessel landmark or structure in the
first image data by applying a spatial relationship model that
captures a geometric relationship between the detected bone
structure and the first vessel landmark or structure.

7. The method of claim 6 wherein detecting the reference
anatomical primitive in the first image data further com-
prises detecting a second vessel landmark or structure within
a local neighborhood of the first vessel landmark or structure
by applying a learned vessel landmark detector.

8. The method of claim 7 wherein detecting the reference
anatomical primitive in the first image data further com-
prises deriving a landmark or a centerline of a vessel
structure based at least in part on the detected second vessel
landmark or structure.

9. The method of claim 3 wherein automatically deriving
the one or more imaging parameters comprises deriving an
image acquisition volume and its corresponding orientation.

10. The method of claim 3 wherein automatically deriving
the one or more imaging parameters comprises determining
scan positioning of a bolus tracking slice.

11. The method of claim 10 wherein the bolus tracking
slice covers an ascending aorta and a descending aorta.
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12. The method of claim 3 wherein automatically deriving
the one or more imaging parameters comprises determining
scan positioning of a contrast-enhanced magnetic resonance
angiography volume.

13. The method of claim 12 wherein the contrast-en-
hanced magnetic resonance angiography volume comprises
a three-dimensional magnetic resonance angiography vol-
ume for visualizing contrast enhancement.

14. The method of claim 12 wherein the contrast-en-
hanced magnetic resonance angiography volume comprises
a four-dimensional magnetic resonance angiography volume
for visualizing contrast enhancement.

15. The method of claim 12 wherein the contrast-en-
hanced magnetic resonance angiography volume covers an
aortic arch and a circle of Willis.

16. The method of claim 3 wherein automatically deriving
the one or more imaging parameters comprises determining
scan positioning of a non-contrast-enhanced acquisition
volume.

17. The method of claim 3 wherein automatically deriving
the one or more imaging parameters comprises determining
one or more reconstruction planes or volumes for recon-
structing one or more images or volumes from the first
image data.

18. The method of claim 3 wherein presenting, via the
user interface, the one or more imaging parameters com-
prises facilitating a workflow for the acquisition, reconstruc-
tion or processing of the second image data of the subject by
presenting guidance generated based on the one or more
imaging parameters.

19. A medical imaging planning system, comprising:

a non-transitory memory device for storing computer-

readable program code; and

a processor in communication with the memory device,

the processor being operative with the computer-read-

able program code to perform steps comprising

(1) receiving scout image data of a subject and learned
hierarchical detectors;

(i1) detecting reference anatomical primitives in the
scout image data by invoking the learned hierarchi-
cal detectors;

(iii) deriving one or more imaging parameters based on
a geometric model, wherein the geometric model
defines a geometric relationship between at least one
of the detected reference anatomical primitives and
the one or more imaging parameters; and

(iv) presenting, via a user interface, the one or more
imaging parameters for use in acquisition, recon-
struction or processing of medical image data of the
subject.



